If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-54x+8=0
a = 11; b = -54; c = +8;
Δ = b2-4ac
Δ = -542-4·11·8
Δ = 2564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2564}=\sqrt{4*641}=\sqrt{4}*\sqrt{641}=2\sqrt{641}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-2\sqrt{641}}{2*11}=\frac{54-2\sqrt{641}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+2\sqrt{641}}{2*11}=\frac{54+2\sqrt{641}}{22} $
| 15-(x-4)=8 | | 5x+4/(2x+1)=3 | | X=4/5(y-4) | | 68(7+((48x)/(16x+48)))=576 | | 2(4+2n)=-(n-3) | | 6-4k=3-k | | 0=-16^2+24t+160 | | 3x*5-27x=0 | | -3/5x+10=12-1/5x | | 8y-(4y=32)=16 | | 6+3(x+7)=54 | | 11v=4v+56 | | 1–2x=5-5x | | 1/8x+8=-4 | | 6−3+4x+1=7x+2 | | 11v=4v | | 8x*3+18x*2+9x=0 | | _+2y-8=3(y-11) | | 12+14x+4x^2=20 | | 3(2x+3)=3(x+2) | | 6−3+4x+1=6-3+4x+1=7x+2 | | (x^2+x-12)(x^2+4x-12)=10x^2 | | X+2(1/x)=11/3 | | 2x/3=3x/8+7x/12 | | B=4(2x+7)+3(2×+7) | | 7y=63-2y | | X+7x-14=2x+96 | | |x-4|=4x+5 | | -4(r-7)=-42 | | -5y-6=-12y+62 | | 100-5x=40+10x | | 7u=u+12 |